You are here
Home > Ultimate Welding Guide > Guide to the Friction Weld Process

Guide to the Friction Weld Process


Guide to the Friction Weld Process


Friction welding is a solid state welding process which produces
coalescence of materials by the heat obtained from mechanically-induced
sliding motion between rubbing surfaces. The work parts are held
together under pressure. This process usually involves the rotating of
one part against another to generate frictional heat at the junction.
When a suitable high temperature has keen reached, rotational notion
ceases. Additional pressure is applied and coalescence occurs.

There are two process variations:

  1. In the original process, one
    part is held stationary and the other part is rotated by a motor which
    maintains an essentially constant rotational speed. The two parts are
    brought in contact under pressure for a specified period of time with a
    specific pressure. Rotating power is disengaged from the rotating piece
    and the pressure is increased. When the rotating piece stops, the weld
    is completed. This process can be accurately controlled when speed,
    pressure, and time are closely regulated.
  2. The other variation is inertia welding. A flywheel is revolved by
    a motor until a preset speed is reached. It, in turn, rotates one of
    the pieces to be welded. The motor is disengaged from the flywheel and
    the other part to be welded is brought in contact under pressure with
    the rotating piece. During the predetermined time during which the
    rotational speed of the part is reduced, the flywheel is brought to an
    immediate stop. Additional pressure is provided to complete the weld.

Friction Welding Video

[iframe width=”400″ height=”300″ src=””]


Both methods utilize frictional heat and produce welds of similar
quality. Slightly better control is claimed with the original process.
The two methods are similar, offer the same welding advantages, and are
shown by figure 10-79 below.

There are three important factors involved:

  1. The rotational speed which is related to the material to be welded and the diameter of the weld at the interface.
  2. The pressure between the two parts to be welded. Pressure changes
    during the weld sequence. At the start, pressure is very low, but is
    increased to create the frictional heat. When the rotation is stopped,
    pressure is rapidly increased so forging takes place immediately before
    or after rotation is stopped.
  3. The welding time is related to the shape and the type of metal
    and the surface area. It is normally a matter of a few seconds. The
    actual operation of the machine is automatic. It is controlled by a
    sequence controller, which can be set according to the weld schedule
    established for the parts to be joined.

Normally, one of the parts to be welded is
round in cross section. This is not an absolute necessity. Visual
inspection of weld quality can be based on the flash, which occurs
around the outside perimeter of the weld. This flash will usually extend
beyond the outside diameter of the parts and will curl around back
toward the part but will have the joint extending beyond the outside
diameter of the part.

If the flash sticks out relatively straight from the joint, it
indicates that the welding time was was too short, the pressure was too
low, or the speed too high. These joints may crack.

If the flash curls too far back on the outside diameter, it
indicates that the time was too long and the pressure was too high.

Between these extremes is the correct flash shape. The flash is normally removed after welding.

Friction Welding Process - Figure 10-79

Welding Variables

  • Rotational Speed
  • Heating pressure
  • Forging pressure
  • Time for heating
  • Time for braking
  • Time for forging

Types of Friction Welding

Spin Welding

Spin Welding Video

Spin welding involves a rotating chuck along with a flywheel. After reaching the required speed the motor disengages with the flywheel.

Linear Friction Welding

Linear Friction Welding Video


Linear Friction Welding

In linear friction welding an oscillating chuck is used. It is applied to non-round shapes as compared to spin welding.  The material welded has to have high shear strength.

Friction Surfacing

Friction Surfacing

Friction surfacing is a surface coating process. The coating material is Mechtrode, which is rotated under pressure over the substrate.

Friction Stir Welding

Friction Stir Welding Diagram

Friction stir welding is a cylindrical shouldered tool with a profiled probe. A pin or nib is used. Friction is created between the metal being worked, the nib and the shoulder.


There are a wide variety of metals that can be joined. The process can also be used to join different metals.

  • Aluminum
  • Brass
  • Cast Iron
  • Copper
  • Lead
  • Bronze
  • Aluminum alloys
  • Steel alloys
  • Magnesium
  • Magnesium Alloys
  • Tungsten
  • Vanadium

See chart of

Metal Combinations
Author: NCT Incorporated

(PDF download)

Advantages and Disadvantages


  1. Can produce high quality welds in a short cycle time.
  2. No filler metal is required and flux is not used.
  3. The process is capable of welding most of the common metals. It
    can also be used to join many combinations of dissimilar metals.
    Friction welding requires relatively expensive apparatus similar to a
    machine tool.
  4. Easy to operate equipment
  5. Not time consuming
  6. Low levels of oxide films and surface impurities
  7. When compared to resistance butt welding creates better welds at lower cost and higher speed, lower levels of electric current are required
  8. Small heat affected zone when comparing the process to conventional flash welding.
  9. When compared to flash butt welding, less shortening of the component.
  10. No need to use gas, filler metal or flux. No slag that can cause weld imperfections.


  1. Process limited to angular and flat butt welds.
  2. Only used for smaller parts.
  3. Complicated when used for tube welding.
  4. Hard to remove flash when working with high carbon steel.
  5. Requires a heavy rigid machine in order to create high thrust pressure.
  6. For Additional Reading or Download

    Chart of Friction Weld Metal Combinations:

    Metal Combinations Chart
    Author: NCT Incorporated

    Free eBook on the Friction Weld Process:

    (PDF Download)
    Friction Weld Company:
    NCT Welding